Fast-light in a photorefractive crystal for gravitational wave detection.

نویسندگان

  • H N Yum
  • M Salit
  • G S Pati
  • S Tseng
  • P R Hemmer
  • M S Shahriar
چکیده

We demonstrate superluminal light propagation using two frequency multiplexed pump beams to produce a gain doublet in a photorefractive crystal of Ce:BaTiO(3). The two gain lines are obtained by two-wave mixing between a probe field and two individual pump fields. The angular frequencies of the pumps are symmetrically tuned from the frequency of the probe. The frequency difference between the pumps corresponds to the separation of the two gain lines; as it increases, the crystal gradually converts from normal dispersion without detuning to an anomalously dispersive medium. The time advance is measured as 0.28 sec for a pulse propagating through a medium with a 2 Hz gain separation, compared to the same pulse propagating through empty space. We also demonstrate directly anomalous dispersion profile using a modified experimental configuration. Finally, we discuss how anomalous dispersion produced this way in a faster photorefractive crystal (such as SPS: Sn(2)P(2)S(6)) could be employed to enhance the sensitivity-bandwidth product of a LIGO type gravitational wave detector augmented by a White Light Cavity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial soliton pairs in an unbiased photovoltaic-photorefractive crystal circuit

: Optical separate spatial dark and bright soliton pairs in steady-state case in one dimension, for a series circuit consisting of two-photon photorefractive (PR) crystal are investigated. Each crystal can be supported the spatial soliton, and at least one must be photovoltaic. The two solitons are known collectively as separate spatial soliton pairs with dark–dark, bright–dark and bright–brigh...

متن کامل

رفتار نورشکستی بلور تیتانات باریم و کاربردهای آن در اندازه گیریهای اپتیکی در زمان واقعی

In this research we measure some of the optical parameters of Barium Titanate crystal (BaTiO3), such as signal beam gain, coupling constant (exponential gain coefficient), change in index refraction and photorefractive sensitivity, which are very significant for optical data storage. In all experiment, two- wave mixing configuration at 632.8 nm (He- Ne laser) were used. Experimental data f...

متن کامل

Fast-light for astrophysics: super-sensitive gyroscopes and gravitational wave detectors

We present a theoretical analysis and experimental study of the behaviour of optical cavities filled with slowand fast-light materials, and show that the fast-light material-filled cavities, which can function as ‘white light cavities’, have properties useful for astrophysical applications such as enhancing the sensitivitybandwidth product of gravitational wave detection and terrestrial measure...

متن کامل

Investigation and Comparison of Light Propagation in Two Graded Photonic Crystal Structures

In this paper, we study two different Graded Index (GRIN) photonic crystal (PC) structures which are named as structure type I and type II. The PC structures are made of the square rod in an air background. To design a GRIN PC structure the lattice constant has been altered in the direction transverse to propagation. We investigated focusing effect             and waveguiding behavior of electr...

متن کامل

Ultra-Fast All-Optical Half Subtractor Based on Photonic Crystal Ring Resonators

Abstract: In this paper, we aim to design and propose a novel structure for all-opticalhalf subtractor based on the photonic crystal. The structure includes two optical switches,one power splitter, and one power combiner. The optical switches are made of theresonant rings which use the nonlinear rods for dropping operation. The footprint of thedesigned structure is about...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 16 25  شماره 

صفحات  -

تاریخ انتشار 2008